Development of Advanced Zero-Net Mass-Flux Actuators for Active Flow Control Applications

Active flow control is the foundation of future innovative aerodynamic concepts for improved vehicle efficiency.  However, the active flow control community generally lacks efficient, powerful actuators and, more importantly, corresponding validated design methodologies capable of demonstrating potential benefits at realistic vehicle flight Mach numbers and Reynolds numbers.  This research brings together a multidisciplinary team with expertise in electromechanical transducers, lumped element modeling, CFD, and experimental fluid dynamics to model, design, fabricate, and test advanced ZNMF actuators that use different transduction schemes:  including piezoelectric and electrodynamic.  The outcome of this research is a validated constrained design optimization tool that enables a class of robust ZNMF actuators for deployment on a larger scale.

Research Assistants: 
Project status: