Single-Input Control of Large Microrobot Swarms using Serial Addressing for Microassembly and Biomedical Applications

This collaborative research project will create a practical control scheme for large swarms of microrobots. These robots are typically no more than a few millimeters in length, and rely on an external power source and control signal. Currently, it is possible to steer the swarm as a whole to a single destination (or perhaps, to a desired average location). However, realizing the full potential benefits of microrobot swarms will require the ability to simultaneously send independent commands, either to individual robots or to small subgroups.

Tissue Engineered Electronic Nerve Interface (TEENI)

A Tissue Engineered Electronic Nerve Interface (TEENI) combines research areas including flexbile MEMS device fabrication, Hydrogels, Magnetic Microparticle Templating, Tissue Scaffolding, and Nerve Regeneration to develop a highly compliant and versatile interface for stimulating and recording the peripheral nerve with the potential for electrode density to scale in a truly 3-Dimensionsal fashion.

Magnetic Thick Films for Integrated Microwave Devices

This project is under DARPA's Magnetic Miniaturized and Monolithically Integrated Components (M3IC) program in the DARPA Microsystems Technology Office.

The objective of this effort is to develop thick-film magnetic materials that can be fabricated on semiconductor integrated circuits to enable highly miniaturized microwave components such as circulators and isolators operating in the 10 to 110 GHz frequency regime. These nonlinear, non-reciprocal components are critical for next generation radios, radar, and sensing systems for defense, consumer, automotive, and healthcare applications.

Large-area Manufacturing of Integrated Devices with Nanocomposite Magnetic Cores

As predicted by Moore's "law", the past few decades have seen massive reductions in the size of integrated circuits, enabling the portable, handheld devices now in everyday use. However, the components that power these devices have not experienced a similar size reduction. For example, the power adapter of a laptop computer is only modestly smaller than that two decades ago, and the printed circuit board inside a smart phone must dedicate between 20% and 40% of the board area for power conversion and management. To date, efforts towards miniaturization have been limited by both materials and manufacturing challenges. To address this gap, this research will study nanomanufacturing processes to facilitate the scalable synthesis of high quality magnetic nanoparticles and nanocomposite core materials and the fabrication of compact power inductors and transformers through assembly of these nanomaterials in a manner that is compatible with current manufacturing processes, such as silicon wafer or printed circuit board fabrication. This compatibility will enable fully integrated and compact system-on-chip or system-in-package power solutions. This research will be accomplished by fostering collaboration among disciplines including materials science, chemical engineering and electrical engineering. It will foster diversity in the profession by involving high school and undergraduate students in research activities and by broadening participation through the inclusion and engagement of women and underrepresented groups.

High Temperature Optical Sapphire Pressure Sensors for Harsh Environments

The primary objective of this research is to develop a high-bandwidth pressure sensor to provide benchmark, time-resolved, dynamic pressure data in high-temperature combustion environments. Specifically, these sensors will be designed to be embedded within a system and provide remote interrogation which will enable pressure to be measured in situ and on line under extreme conditions. Ultimately, this sensing technology will lead to better understanding and increased efficiency of complex power generation systems. In order to achieve this objective, research in sapphire laser micromachining and thermocompression bonding via spark plasma sintering technology will be conducted to enable fabrication of a fiber optic lever pressure sensor that uses a sapphire optical fiber for transduction of the pressure-induced diaphragm deflection. The proposed project will result in instrumentation-grade, high-temperature sensors that enable flush mounted measurements without sensor cooling. Furthermore, the use of optical techniques enables “passive” device operation, with electronics located remotely from the sensor. After fabrication and packaging, the pressure sensor will be rigorously characterized in acoustic plane wave tubes under both ambient and high-temperature conditions to determine its performance as a quantitative measurement device.

MEMS-based Fiber-optic Two-photon Microscopy Probe for Real Time In vivo 3D Neural Imaging in Freely Behaving Animals

The goal of this project is to develop a miniature two-photon microscopy probe with light weight and use it on freely behaving mice for in vivo 3D neural imaging. Both 2-axis MEMS scanning mirror and z-axis tunable microlens will be developed. Double-cladding photonic crystal fibers will be used to accommodate the excitation laser and the frequency-doubled two-photon signals.