We are developing time-resolved dynamic pressure sensing technology for high-temperature (> 1000 °C) applications in the aerospace, energy, and automotive sectors and for chemical environment sensors for biotechnology companies.
Almost all of the existing pressure sensing systems are not capable of operation in environments in excess of 1000 °C. Those systems that can survive the extreme temperatures suffer from reduced performance and induced bias errors arising from temperature mitigation efforts. We will investigate wireless, electromagnetic wave-guide and sapphire-based fiber optical based transduction technology combined with laser micromachining of sapphire and platinum film deposition to dynamic pressure sensors capable of continuous operation at 1000 °C. These technologies eliminate the need for close proximity electronics and will be fabricated from high-temperature capable materials that possess nearly identical thermal coefficients of expansion to minimize thermal drift.