Current

AEROMORPH: Aerospace Morphing via Integrated Sense, Assess and Respond

This Center of Excellence (COE) will conduct fundamental research that transforms the way in which conventional distributed sensing, state estimation, morphing structures, and control are applied to high-speed aerospace systems. Our team will address the limitation of conventional feedback loops using novel sensing motifs and inherent coupling to adaptive structures to create an agile and robust aerospace system with integrated sense, assess, and respond functionality.

A Flat-Packaged Optical Shear Stress Sensor Using Moiré Transduction for Harsh Environments

As the field of hypersonic vehicle design develops, having shear stress data can aid in the minimization of 
drag source effects and verify results from computational fluid dynamics simulations. Transducer size, 
placement, and narrow bandwidth currently limit accurate shear stress measurements due to the small 
length and time scales seen in turbulent fluid motion and the issue of flow disruption. Shock wave and 
boundary layer effects also produce large thermal loads in hypersonic flows. The proposed research plan 

Additive microfabrication processes using micro-stereolithography for functional microdevices

The goal of this project is to develop processes that will advance microfabrication technologies using stereolithography as the additive manufacturing (3D printing) method. This project focuses on fabrication of multifunctional devices that are both high resolution (tens of micrometers) and large area (tens of millimeters). The ability to fabricate functional microdevices using 3D printing can enable novel devices in the area of MEMs, sensors, actuators, microrobots, micro-optics, radio frequency, etc.

A High-Bandwidth Heat Flux Sensor for Measurements in Hypersonic Flows

Understanding the character and dynamics of hypersonic boundary layers poses a considerable challenge to the design of hypersonic vehicles.  Specifically, being able to predict the location of laminar-to-turbulent transition is of critical concern as it affects heating rates, aerodynamic loading, and skin-friction drag, therefore impacting the design of the thermal protection system and thus the overall weight and performance of the vehicle.

Ultra-compact Magnetoelectric Nanowire Antennas

We are developing ultra-compact antennas, where the antenna size is much smaller than the electromagnetic wavelength.

Pervasive wireless connectivity is a must for today’s interconnected world.  Many MHz-GHz communication systems require antennas with physical sizes that can be much larger than the entire size of the system.  It is difficult to achieve good antenna performance if the size of the antenna is less than 1/10ththe electromagnetic wavelength (e.g. minimum of 3 cm at 1 GHz)

Planning Grant: Engineering Research Center for Neural Engineered Systems with Societal Impact

Chronic and acute pain affect ~100 million people in the US and greatly increase national rates of morbidity, mortality, and disability. Pain not only negatively impacts individual lives in significant ways, it also imposes enormous national economic costs (up to $635B annually). The misuse of and addiction to opioids, such as prescription pain relievers, heroin, and synthetic opioids (e.g., fentanyl and carfentanil) is a serious national crisis. Currently ~130 Americans die of opioid overdose every day.

Planning Grant: Engineering Research Center for Neural Engineered Systems with Societal Impact

Chronic and acute pain affect ~100 million people in the US and greatly increase national rates of morbidity, mortality, and disability. Pain not only negatively impacts individual lives in significant ways, it also imposes enormous national economic costs (up to $635B annually). The misuse of and addiction to opioids, such as prescription pain relievers, heroin, and synthetic opioids (e.g., fentanyl and carfentanil) is a serious national crisis. Currently ~130 Americans die of opioid overdose every day.