High Temperature Optical Sapphire Pressure Sensors for Harsh Environments

The primary objective of this research is to develop a high-bandwidth pressure sensor to provide benchmark, time-resolved, dynamic pressure data in high-temperature combustion environments. Specifically, these sensors will be designed to be embedded within a system and provide remote interrogation which will enable pressure to be measured in situ and on line under extreme conditions. Ultimately, this sensing technology will lead to better understanding and increased efficiency of complex power generation systems. In order to achieve this objective, research in sapphire laser micromachining and thermocompression bonding via spark plasma sintering technology will be conducted to enable fabrication of a fiber optic lever pressure sensor that uses a sapphire optical fiber for transduction of the pressure-induced diaphragm deflection. The proposed project will result in instrumentation-grade, high-temperature sensors that enable flush mounted measurements without sensor cooling. Furthermore, the use of optical techniques enables “passive” device operation, with electronics located remotely from the sensor. After fabrication and packaging, the pressure sensor will be rigorously characterized in acoustic plane wave tubes under both ambient and high-temperature conditions to determine its performance as a quantitative measurement device.

A Flush-Mount Piezoelectric MEMS Microphone for Aeroacoustic Flight Testing Applications

In their effort to locate, understand and mitigate the impact of noise sources on an aircraft, aeroacousticiansare in need of a high performance, low cost microphone to combat the increasing noise restrictions on commercial aircraft. Existing commercial sensors, even with their relatively high cost, in some cases constrain the quality and type of measurement that may be achieved. One such constraint is that the physical size and characteristics of the sensors limit the optimal locations in which the sensors may be placed. Previous generations of MEMS aeroacoustic microphones have failed to address the need for a sensor that can be packaged and installed with a smooth front surface to be used for boundary layer measurements in a fuselage array at cruise conditions. Additionally, these microphones must meet demanding requirements, including the sensing of high sound pressure levels (>160 dB) with low distortion (<3%) and high sensitivity stability (with respect to moisture and freezing) over temperatures from -60°F to 150°F. This work addresses the limitations of existing MEMS piezoelectric microphones used in aeroacoustic applications by incorporating through-silicon vias(TSVs) into the fabrication to eliminate the use of wirebondsthat affect the flow field and create an overall flush-mount microphone package.

A MEMS-based Fast-response Five-hole Probe with Optical Pressure Transducers

The goal of this research is to develop a MEMS-based Five-hole Probe(5HP) that is able to measure the localized velocity vector (both the velocity magnitude and direction) and the static and dynamic pressure, in steady and/or unsteady flow fields. Five optical pressure sensors located on the hemisphere tip of the 5HP provide all information that is needed to resolve the flow. This 5HP is expected to be able to provide high spatial resolution, high frequency response and is compatible with elevated temperature environments. A primary focus of this research is on the microfabrication and micromachining of a die that incorporates five optical transducers and its successive packaging process. The completed sensors will be tested in flow cells and wind tunnels at UF for the final calibration.

Wireless Shear Stress Sensor Array


Research Objectives

To develop a wireless shear-stress sensor array to provide three-dimensional, time-resolved, fluctuating skin friction data to aid turbulence model development.


Each sensor is effectively an LC tank made up of a variable-capacitance floating element and an integrated inductor. The sensing antenna is inductively coupled to the tank and can detect a change in the resonant frequency caused by a displacement of the floating element. An array is realized by designing each sensor to have it’s own unique resonant frequency. Then a single broad spectrum antenna can monitor the entire array.

Broader Impact

The realization of such an array will enable fundamental scientific studies of complex turbulent flows. It could also be implemented into a feedback control system for future air vehicles employing active flow control.

Capacitive Shear Stress Sensors

This project focuses on the development of a non-intrusive, direct, time-resolved wall shear stress sensor system for low-speed applications. The goals of the project include the fabrication and packaging of a 2-D wall-shear stress sensor with backside wire bond contacts to ensure hydraulic smoothness in flow environments. A differential capacitance transduction scheme is utilized with interdigitated comb fingers on each side of a suspended floating element, allowing for measurements to be made in both the positive and negative x- and y-directions.  A synchronous modulation-demodulation circuit is employed to simultaneously capture both mean and fluctuating shear content. Both AC and DC calibrations are performed to determine sensor sensitivity in both directions of transduction. This is the most successful effort of shear sensor development in published literature. 

An Experimental Investigation of Wing Tip Vortex Attenuation

A detailed study of the effect of blowing from a rounded wing tip on the attenuation of wing tip vortices generated by a NACA0012 semi-span airfoil is being conducted in two wind tunnels at IMG.  The first, the UF Closed Circuit Wind Tunnel, will be used for measuring lift and drag of the airfoil and characterizing the wing tip flowfield using one or more flow measurement techniques such as particle image velocimetry, laser Doppler velocimetry and a fast-response Cobra probe.  The second facility, the UF Aeroacoustic Flow Facility (UFAFF), is an open jet test section wind tunnel inside an anechoic chamber that will be primarily used to characterize the acoustics of the airfoil with far-field microphones and phased acoustic arrays.  Lift and drag will also be measured in the UFAFF to determine the effect, if any, of the differing wind tunnel configurations on aerodynamic performance.

An Experimental Study of Aircraft Landing Gear Noise

A series of aerodynamic and acoustic wind tunnel experiments are being performed on a 1/4-scale high fidelity replica of a Gulfstream G550 aircraft nose landing gear at the University of Florida Aeroacoustic Flow Facility (UFAFF). Experiments consist of the analysis of model surface pressure measurements and flowfield velocity via laser Doppler velocimetry (LDV), noise source localization maps via beamforming using a large-aperture microphone array, and the determination of far-field noise level spectra using a linear array of free-field microphones. The objective of this study is to determine the mechanisms of nose landing gear noise and to explore potential noise reduction schemes.

A Grazing Flow Impedance Facility For Engine Nacelle Acoustic Liners

Acoustic liners remain the standard for providing a method to reduce environmental noise from aircraft engine nacelles. To aid in their development, facilities are required that are capable of accurately educing the acoustic impedance in the presence of mean flow. The Grazing Impedance Tube at NASA LaRC possesses these capabilities and was donated to the University of Florida. Improvements have been made to enable optical flow diagnostics, provide an increased speed range, and reduce turbulence levels. This facility provides a testbed to improve upon current liner impedance eduction methods as well as facilitate development of novel design approaches and studies into fundamental liner flow physics.

Grazing Flow Impedance Tube Profile

Metric Value
Dimensions 2" x 2"

Maximum Mach Number

Maximum SPL

130 dB @ Ma = 0.5