Materials, Manufacturing, and Modeling

All faculty in IMG focus on the development or end-use of microelectromechanical systems (MEMS). Underpinning these efforts are fundamental research thrusts in materials synthesis and analysis; multiscale manufacturing; micro/nanofabrication and process integration; solid-state physics; and system simulation, modeling, design, and optimization.

Photoresponsive Polymers for Autonomous Structural Materials with Controlled Toughening and Healing

Our research goal is to develop photoresponsive shape memory polymers (SMPs) that incorporate cinnamic acid and cinnamylidene acetic acid which are able to undergo efficient photoreversible reactions when exposed to alternating wavelengths of light. The hope is that this reversible reaction will be used to actively cleave and reform covalent crosslinks to mitigate the propagation of damage though local fracture, achieve shape recovery for crack closure, and to ultimately reform crosslinks across the crack face to recover the strength of the original material.  Our current results have shown that we can produce 1200% increased toughness, recover the plastic deformation of the specimen following loading to return it back to its original dimensions and subsequently achieve 96% healing efficiency without the reformation of crosslinks in the polymer.  This work was featured live on CNN and various other news outlets.

This approach is novel in that using adaptation of the local stiffness to mitigate the propagation of damage followed by healing has not been studied in the literature; therefore this work has the potential to make significant advances in the design of autonomous structures and in the development of greater post-treatment measures concerning fractured areas. The effort from this research will ultimately provide methods to create materials that function and respond to damage; mimicking what some biological systems naturally do.

Micromachining of Permanent Magnet Undulator Structures for Compact X-ray Sources

Research Objective

To investigate the use of advanced microfabrication technologies and MEMS-enabled magnetization methods in developing reduced-scale permanent magnet undulator structures (with fine pole pitch ~5 microns) while maintaining reasonable magnetic field strengths as well as efficient generation of brilliant, high energy (>10keV) mono-energetic x-rays from modest electron beam source energies (~200MeV).

Theory

An accelerated beam of electrons with relativistic velocities experiences an undulation when passing through a spatially periodic magnetic field. This undulation of the beam trajectory results in the generation of electromagnetic radiation from which intense, tunable x-rays can be produced.

Wireless Shear Stress Sensor Array

 


Research Objectives

To develop a wireless shear-stress sensor array to provide three-dimensional, time-resolved, fluctuating skin friction data to aid turbulence model development.

Approach

Each sensor is effectively an LC tank made up of a variable-capacitance floating element and an integrated inductor. The sensing antenna is inductively coupled to the tank and can detect a change in the resonant frequency caused by a displacement of the floating element. An array is realized by designing each sensor to have it’s own unique resonant frequency. Then a single broad spectrum antenna can monitor the entire array.

Broader Impact

The realization of such an array will enable fundamental scientific studies of complex turbulent flows. It could also be implemented into a feedback control system for future air vehicles employing active flow control.

Capacitive Shear Stress Sensors

This project focuses on the development of a non-intrusive, direct, time-resolved wall shear stress sensor system for low-speed applications. The goals of the project include the fabrication and packaging of a 2-D wall-shear stress sensor with backside wire bond contacts to ensure hydraulic smoothness in flow environments. A differential capacitance transduction scheme is utilized with interdigitated comb fingers on each side of a suspended floating element, allowing for measurements to be made in both the positive and negative x- and y-directions.  A synchronous modulation-demodulation circuit is employed to simultaneously capture both mean and fluctuating shear content. Both AC and DC calibrations are performed to determine sensor sensitivity in both directions of transduction. This is the most successful effort of shear sensor development in published literature. 

MEMS-based Optical Sensors for High Temperature Applications

The goal of this research is to develop a pressure sensor and shear stress sensor that are able to provide continuous, time-resolved flow measurements within high temperature environments such as those seen in hypersonic wind tunnels and turbines.  A primary focus of this research is on the micromachining of sapphire using a picosecond laser.  Sapphire’s mechanical and thermal properties make it an ideal material for high temperature measurements.  Each sensor operates by mechanically deflecting under either a pressure or shear stress.  These deflections can then be detected using an opto-mechanical transduction scheme.  The completed sensors will be tested in flow cells and wind tunnels at UF as well as in other transonic and hypersonic facilities.

J-355PS Picosecond Laser Micromachining Workstation from Oxford Lasers

Development of a MEMS Piezoelectric Microphone for Aeroacoustic Applications

Description

Boeing Dreamliner

Passenger expectations for a quiet flight experience [1] coupled with concern about long-term noise exposure of flight crews [2] drive aircraft manufacturers to reduce cabin noise in flight. Cabin noise has traditionally been limited using insulating panels and skin dampers on the fuselage. Unfortunately, these thin panels are not effective at reducing low frequency (long wavelength) noise and cannot be made thicker due to weight concerns [1]. Treating the noise at its source shows potential for reduction of low frequency noise and weight savings compared to insulating panels. With fuel costs rapidly increasing, reduction of excess weight and subsequent maximization of the "revenue-generating payload" [3] is more important than ever.

In order to identify noise sources and assess the impact of noise reduction technologies during the design process, aircraft manufacturers require robust, low cost microphones. Measuring primary sources of cabin noise, such as shockcell noise, is difficult under simulated cruise conditions in test facilities [1] and establishes the need for microphones that can be used in full-scale tests at altitude. Their use on the fuselage exterior requires extremely small packaged sizes, in addition to the ability to withstand moisture and freezing conditions at flight altitudes. Microelectromechanical systems (MEMS) microphones show promise for meeting the stringent performance requirements of aircraft manufacturers at reduced size and cost, made possible using batch fabrication technology [4-9].