News and events of Mark Sheplak's Research Group

Primary tabs

IMG Undergraduate Tiffany Reagan wins NSF Graduate Research Fellowship

Congratulations to Tiffany Reagan, a senior IMG undergraduate student, who has today been named a 2011 winner of the National Science Foundation Graduate Research Fellowship.  Tiffany has been with IMG since April of 2010 and has been an integral contributor to the development of a MEMS piezoelectric microphone for aeroacoustic applications and other research within Dr. Mark Sheplak's group.  She will choose between University of Florida and California Institute of Technology for her graduate work.  Congratulations, Tiffany!

IMG's Matt Williams recipient of MAE's "Outstanding Graduate Researcher Award."

Today Matt Williams was announced as a recipient of the MAE department's "Outstanding Graduate Researcher Award" for 2011.  Below is the announcement sent out by the department chair, Dr. Balachandar:

Dear Faculty, students and staff:

The following are the department awards for 2011 and they will be
distributed at the Awards Banquet on April 8th. I want to thank the
Awards Committee for their evaluation of the nominations:

Faculty Awards:
Teacher of the Year: Carl Crane
Researcher of the Year: Ghatu Subhash

Staff Awards:
Staff of the Year: Jennifer Brown

Outstanding Graduate Researcher Awards:
SMDM: Brandon Krick AND Shawn English
DSC: Shubendu Bhasin
TSFD: Matthew Williams

Best dissertation award (2010):
SMDM: Nathan Branch
DSC:  Nitin Sharma
TSFD: Manoj Parmar

Best TAs:
Tim Elmore and Ira Hill (both worked in the Controls lab)

Undergraduate Research Symposium

Event date: 
Fri, 03/25/2011 - 1:00pm to 9:00pm

On Friday, March 25th, some IMG undergraduates will present their work at the Undergraduate Research Symposium in the Reitz Grand Ballroom.  Two poster sessions are  scheduled for 9-11am and 3-5pm, with oral presentations 1-3pm.  The presentation schedule is attached; please come out and show your support for the IMG undergraduates!

IMG Seminar: Capacitive shear stress sensor and its interface circuitry

Event date: 
Wed, 11/17/2010 - 9:00pm to 10:00pm

Speaker: Jessica Meloy

Introduction: The time-resolved characterization of complex wall-bounded flow fields is difficult and unachievable with the current set of research tools. At the University of Florida the Interdisciplinary Microsystems Group (IMG) has teamed with FCAAP to develop the next generation of instrumentation grade sensors for aerospace applications. Specifically, microelectromechanical systems (MEMS) technology is being used to develop sensor systems for reliable direct time-resolved shear stress measurement and fill this instrumentation void. IMG has developed a robust miniaturized package for integration into flow control studies currently being conducted at both the Advanced Aero-Propulsion Laboratory at Florida State University and at IMG wind tunnel facilities at the University of Florida. The specific sensor system being utilized in these studies is capable of measuring shear stress values as low as 1mPa with a sensitivity of 1.7mV/V/Pa and at least 80dB rejection to cross sensitivities. In this seminar the sensor system’s circuitry and package development will be discussed.

Capacitive Shear Stress Sensors

This project focuses on the development of a non-intrusive, direct, time-resolved wall shear stress sensor system for low-speed applications. The goals of the project include the fabrication and packaging of a 2-D wall-shear stress sensor with backside wire bond contacts to ensure hydraulic smoothness in flow environments. A differential capacitance transduction scheme is utilized with interdigitated comb fingers on each side of a suspended floating element, allowing for measurements to be made in both the positive and negative x- and y-directions.  A synchronous modulation-demodulation circuit is employed to simultaneously capture both mean and fluctuating shear content. Both AC and DC calibrations are performed to determine sensor sensitivity in both directions of transduction. This is the most successful effort of shear sensor development in published literature.