News and events of David Arnold's Research Group

Primary tabs

2016 IMG Annual Report

The IMG faculty are pleased to release the first IMG annual report for the calendar year 2016. This document is a record of the group activities, achievements and finances for the previous year. You are encouraged to refer to this document if needed.

The 2016 IMG Annual Report can be downloaded here.

2016-2017 IMG Awards

Congratulations to Mayur Ghagte, Seahee Hwangbo, Camilo Vélez and Xiao Wen for winning the first edition of the IMG Awards for 2016-2017. The IMG Awards recognize outstanding achievements and contributions of student members in our organization. The research awards honor the exceptional academic impact the students have made in their field, and the service awards acknowledge the hard work the students have put into improving and maintaining the quality of IMG.

  •  Mayur Ghagte, Seahee Hwangbo and Camilo Vélez won the IMG Excellence in Research.
  •  Camilo Vélez and Xiao Wen won the IMG Excellence in Service.

IMG Kickoff Meeting

Event date: 
Fri, 08/18/2017 - 11:45am to 1:30pm

Welcome back from a great summer IMG members!

As the Fall semester moves closer, we will be having our IMG Kickoff Meeting on August 18, 2017 from 11:45AM to 1:30PM. During this meeting, we'll cover all manner of IMG topics and introduce new members to the group. We will also be taking our group photo, so if you have a IMG polo or t-shirt, feel free to wear it.

Please note, all IMG members are expected to attend this meeting! Pizza and drinks will be provided as well!

Magnetic Thick Films for Integrated Microwave Devices

This project is under DARPA's Magnetic Miniaturized and Monolithically Integrated Components (M3IC) program in the DARPA Microsystems Technology Office.

The objective of this effort is to develop thick-film magnetic materials that can be fabricated on semiconductor integrated circuits to enable highly miniaturized microwave components such as circulators and isolators operating in the 10 to 110 GHz frequency regime. These nonlinear, non-reciprocal components are critical for next generation radios, radar, and sensing systems for defense, consumer, automotive, and healthcare applications.