News and events of David Arnold's Research Group

Primary tabs

IMG Kickoff Meeting

Event date: 
Fri, 08/22/2014 - 5:00pm to 6:30pm

We will hold an IMG Kickoff meeting on Friday August 22nd in Larsen 310, starting at 1 pm, immediately after our Friday BBQ.  This meeting is mandatory for all IMG personnel.  We will provide an overview of IMG to new students, review lab organization/training, emphasize importance of the wiki, and review safety information.

IMG @ Hilton Head 2014

IMG will present six papers at the upcoming Hilton Head Workshop in June 2014 (www.hh2014.org):

  • N. Garraud and D. P. Arnold, “Characterization of the rotational dynamics of magnetic micro-discs in suspension” (poster)
  • J. Li, V. Tseng, and H. Xie, "Wafer-level fabrication of power inductors in silicon for compact dc-dc converters” (poster)
  • D. Mills, T.-A. Chen, and M. Sheplak, “A MEMS optical moiré shear stress sensor for harsh environment applications” (poster)

  • O. D. Oniku, A. Garraud, W. C. Patterson, and D. P. Arnold, “Development and modeling of a micromagnetic imprinting process” (poster)
  • W. C. Patterson, E. E. Shorman, N. Garraud, and D. P. Arnold, “A magnetic microscope for quantitative mapping of the stray fields from magnetic microstructures” (poster)
  • C. Velez, I. Torres-Díaz, O. D. Oniku, L. Maldonado-Camargo, C. Rinaldi, and D. P. Arnold, “Fabrication of Magnetic Microstructures by In Situ Crosslinking of Magnetically Assembled Nanoparticles” (poster)

Distributed Wireless Power Transmission to Compact Electronic Devices

Motivation

The maintenance procedures to replace the batteries typically require physical contact or wire connections with the devices, which may be inconvenient, difficult, or costly. Even where batteries can be easily recharged, the ever-growing hunger for portable power presents an important technical challenge. For example, the modern dismounted Warfighter carries a vast array of battery-powered technologies. The logistical burden of monitoring, recharging, and replacing these batteries is overwhelming, and no soldier would willingly go on mission without fully charged batteries. For soldier power systems, there are two main issues: the large number of different electronic devices and the requirement for constant charging for maximum mission readiness.

To address these issues, the project explore the development of an electrodynamic wireless power transmission (EWPT) technology that is capable of wirelessly delivering power to a spatially distributed collection of power receivers over distances of a few centimeters to a few meters. Compared to the more widely studied inductively coupled wireless power transmission schemes, the EWPT technology enables the power receivers to be physically much smaller and with fewer restrictions on their orientation.

In the EWPT system, a transmitting coil is connected to a power source and carries an alternating current. The field generated by the transmitting coil moves a permanent magnet in the receiver through electrodynamic (magnetic) forces and/or torques. The magnet is mounted on a spring and is allowed to oscillate. This motion is then converted into electrical energy using an electrodynamic transduction within the receiver. Even using fairly weak magnetic fields, significant mechanical oscillations can be induced when the receiver magnet is excited near its mechanical resonance (assuming an underdamped mechanical system).