Brownian Dynamics Simulations of Magnetic Nanoparticles Captured in Strong Magnetic Field Gradients

TitleBrownian Dynamics Simulations of Magnetic Nanoparticles Captured in Strong Magnetic Field Gradients
Publication TypeJournal Article
Year of Publication2017
AuthorsZhao, Z., I. Torres-Díaz, C. Velez, D. P. Arnold, and C. Rinaldi
JournalThe Journal of Physical Chemistry C
Volume121
Issue1
Pagination801 - 810
Date PublishedDec-01-2017
ISSN1932-7447
Abstract

The behavior of spherical single-domain magnetic nanoparticles in strong inhomogeneous magnetic fields is investigated through Brownian dynamics simulations, taking into account magnetic dipole–dipole interactions, repulsive hard-core Yukawa potential, hydrodynamic particle-wall interactions, and the mechanism of magnetic dipole rotation in the presence of a magnetic field. The magnetic capture process of nanoparticles in prototypical magnetic field gradients generated by a sudden reversal in perpendicular magnetization of a flat substrate (defining a “capture line”) is studied as a function of strength of the magnetic field and volume fraction of the magnetic nanoparticles. Capture curves show a regime where capture follows a power law model and suggest that particles with the Brownian relaxation mechanism are captured at a slightly faster rate than particles with the Néel relaxation mechanism under similar conditions of the field gradient. Additionally, evaluation of the shape of the aggregates of captured particles suggests that greater dipole–dipole interactions result in aggregate structures that are flatter/wider than in the case of negligible dipole–dipole interactions. These results can help guide the design of systems for magnetically directed assembly of nanoparticles into complex shapes at a substrate.

URLhttp://pubs.acs.org/doi/10.1021/acs.jpcc.6b09409
DOI10.1021/acs.jpcc.6b09409
Short TitleJ. Phys. Chem. C