News and events of

Primary tabs

IMG Seminar: CMOS-MEMS inertial measurement unit (IMU)

Event date: 
Wed, 10/27/2010 - 8:00pm to 8:30pm

Speaker: Hongzhi Sun

Introduction: IMUs have wide automotive, consumer electronics, and medical applications. The focus of this talk is on a three-axis accelerometer and two single-axis gyroscopes. The presentation will include the CMOS-MEMS process, the interface circuit design, and the characterizations for the monolithic IMU.

Refreshments will be served.

IMG Seminar: Surface Micromachined Multilayer Composite right/left Handed Metamaterial for Highly Compact RF Circuits

Event date: 
Wed, 09/22/2010 - 8:30pm to 9:00pm

Please note that this week's seminar is from 4PM (not 3PM) due to speaker's conflict.

Snacks and drinks will be served

Speaker: David Senior

Abstract: Highly compact metamaterial devices are demonstrated by combining the composite right-left handed transmission line approach with a multilayer surface micromachined fabrication processusing SU8 as a dielectric layer. Multiband microwave metamaterial applications for ISM frequencies of 2.4GHz and 5.8GHz are implemented The use of microfabrication techniques eliminates the necessity of using surface mounting device (SMD) based lumped components and makes the CRLH structures compatible and integrable with CMOS/MEMS processes while allowing batch fabrication of multiple devices.

IMG Seminar: A High Gain Circular Polarization Antenna using Metamaterial Slabs

Event date: 
Wed, 09/22/2010 - 8:00pm to 8:30pm

Please note that this week's seminar is from 4PM (not 3PM) due to speaker's conflict.

Snacks and drinks will be served

Speaker: Cheolbok Kim

Abstract: Modern satellite communication systems often demand low-profile, wide bandwidth, high gain, and circular polarization antennas. For this applications, a high gain circular polarization antenna with metamaterial slabs has been proposed. Metamaterial slabs having periodic circular lattices have been used to focus beam while fan-shaped patches are added on the slabs to generate circular polarization. The proposed antenna has shown a good axial ratio at the resonant frequency band. It also has shown a simulated gain improvement and transmission gain improvement. In addition, the left/right handed polarization is simply controlled by turning over metamaterial slabs.

Flexible Microelectrode Array for Neural Recording

Technological advances in microelectrode neural probes have great potential to benefit patients with neurological diseases and injuries because they allow for direct interfacing and intervention with neurons of the nervous system. The interface design involves chronically collecting neural activity directly from the cortex of the brain, interpreting its information, and delivering therapy via an electronic interface. Such Brain-Machine Interface (BMI) systems that are capable of recording and processing the activity of large ensembles of cortical neurons have the potential to allow paralyzed individuals to communicate with the external world via computer control or direct control of prosthetic limbs and wheelchairs.We design, fabricate, and test flexible microelectrode array that can be hybrid-packaged with custom electronics in a fully implantable form factor to realize a self sustained BMI system. Also the flexible cable will provide strain relief to the implanted electrode and potentially improve long term viability.

This project aims at designing novel micromachining techniques for polymer-based flexible substrate microelectrodes as well as defining requirements for recording amplification, signal processing, and wireless telemetry systems. Much effort is going into the design and fabrication of highly compliant 2D electrodes which will potentially increase the possibilities of achieving reliable neural recordings over a chronic period . All efforts are in attempt to further the field of chronic neural recording for neuroprosthetic therapies.

IMG Seminar: Spatially Controlled Electrospun Solid Gradient Aligned Nanofiber Tissue Scaffold for Guided Spiral Ganglion Neuron Culture

Event date: 
Wed, 09/15/2010 - 7:00pm to 7:30pm

Speaker: PitFee Jao

The direction of cell growth is associated with chemical, structural and/or mechanical properties of the substrate. Structurally, electrospun nanofibers provide a suitable environment for cell attachment and proliferation due to their similar physical dimension to that of the extracellular matrix. Furthermore, by modulating the topographical features of nanofibers, which include fiber diameter and orientation, cell growth and its related functions can be modified. Here, we demonstrate a solid gradient scaffold for directional growth of spiral ganglion neurons (SGNs).